

FIELD-PROVEN COTS, MOTS AND CUSTOM MILITARY POWER SOLUTIONS

M9526 SERIES 28V SWITCH MODULE

PRODUCT HIGHLIGHTS

- Short Circuit Current Limit Adjustable
- Overload Breaking Current Adjustable
- I2C Communication
- Discrete Operation
 Option

Cham, Switzerland
www.enercon-europe.com
enercon@enercon-europe.com
+41-41-740-4554

Global Headquarters

Netanya, Israel www.enercon.co.il sales@enercon.co.il +972-73-246 9200

Gurgaon, India www.mpsindia.in sales@mpsindia.in +91-124-651 0010

Electrical Specifications

DC Output DC Input

Input: 0 to 50 V_{DC} • Input-to-Output impedance: Less than 2.5 mΩ @ 25 °C

Vcc: 3 to 5.5 Vpc • Max load capacitance per channel:

3 mF

Vcc Supply Current: 25mA Typical

Output

• Overload Breaking Current Adjustable from 2A to 30 A according to I2T curve.

• Short Circuit Current Limit Adjustable from 10 A to 125 A

according to SCL curve.

Control

• I2C Communication see • Open drain fault discrete signal

• On/Off discrete signal

EMC

Complies with MIL-STD-461F (50µH LISN): RE102, CE102, CS101¹, CE101¹, CS114¹,

CS115¹, CS116¹, RS103¹

Note 1: Tested with full system

Environmental 1

Design to Meet MIL-STD-810G

Temperature Operating: -55°C to +125°C at

ambient

Storage: -55°C to +125°C

Altitude

Method 500.5, Procedure I & II Storage/Air Transport: 40 kft

Operation/Air carriage: 70 kft

Fungus

Does not support fungus growth, in accordance with the guidelines of

MIL-STD-454, Requirement 4.

Humidity

Method 507.5, Up to 95% RH

Shock1

Salt Fog:

Method 509.5

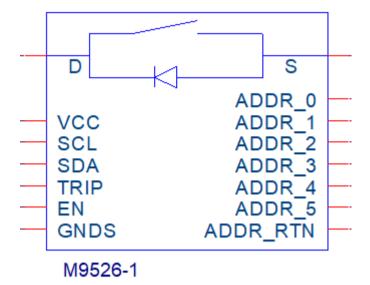
Method 516.6

40g, 11msec saw-tooth (all

directions)

Vibration¹

Figure 514.6E-1. General minimum integrity exposure. (1 hour per axis.)


Note 1: Tested with full system

Reliability

2,529,861 hours, calculated IAW MIL-HDBK-217F Notice 2 at +85°C, Ground fixed conditions.

Date: October 1, 2020 Rev (-) Page 2 of 8

Functions and Signals

Signal No.	Signal Name	Description			
1	VCC	Control supply voltage with respect to GNDS.			
2	SDA	I2C bus Data.			
3	SCL	I2C bus Clock.			
4	TRIP	Open drain fault discrete signal. See Figure 1.			
5	EN	The Enable signal is used to turn the SWITCH BRICK ON and OFF.			
6	ADDR_0	Used for Slave Device Addressing			
7	ADDR_1	Used for Slave Device Addressing			
8	ADDR_2	Used for Slave Device Addressing.			
9	ADDR_3	Used for Slave Device Addressing.			
10	ADDR_4	Used for Slave Device Addressing			

11	ADDR_5	Used for Slave Device Addressing.			
12	ADD_RTN	Used for Slave Device Addressing.			
14	GNDS	ground for I2C, TRIP, EN and VCC.			
15	D	Drain for Power Path. For positive voltage switch it will be the input voltage side connection.			
16	Source for Power Path. For positive voltage switch it will be the I connection.				

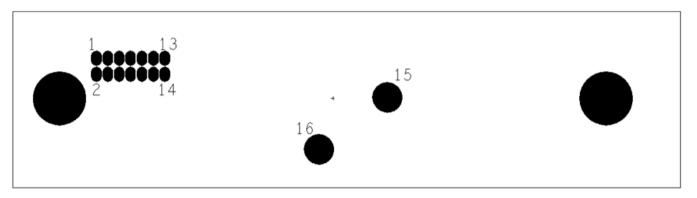
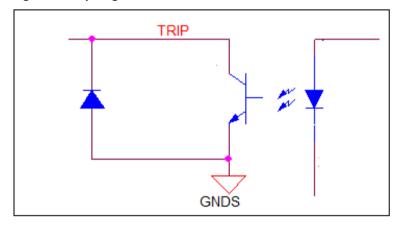



Figure 1 – Trip stage

Date: October 1, 2020 Rev (-) Page **4** of **8**

1. Typical Tests Results

2. Typical Characteristics

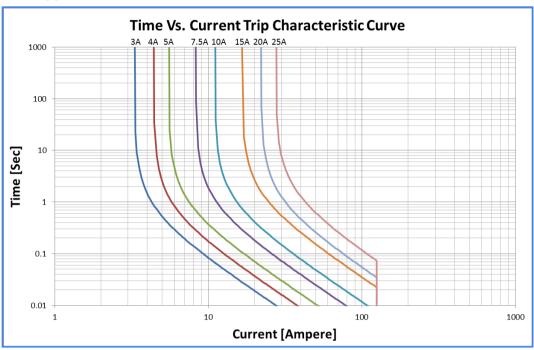


Figure 2 - Time vs. Current Trip

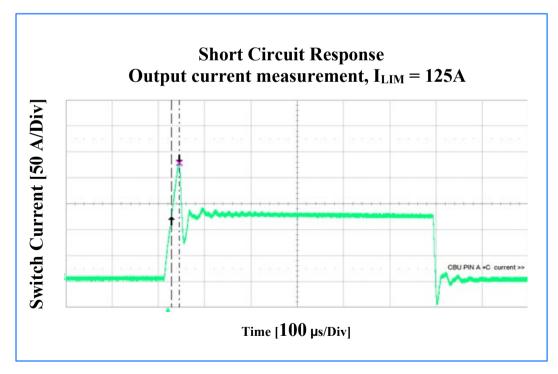


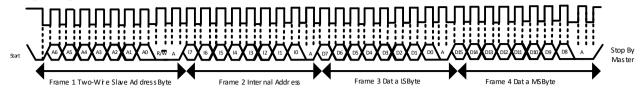
Figure 3 - Short Circuit Response

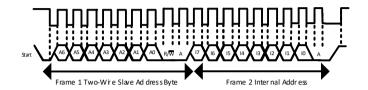
Date: October 1, 2020 Rev (-) Page **5** of **8**

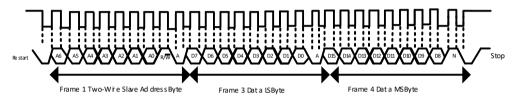
1. I2C Protocol

Slave Address:

For $0 \le ADDR \le 7 \rightarrow ADDR + 0x70$

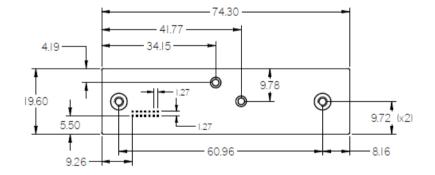

For other Address = ADDR

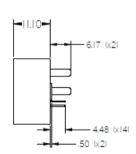

Slave will be read as a memory device with one byte of internal address.


Byte order shall be little endian. For example, 01h address will be the LSB of VOUT1.

Internal Address	Name	Function	R/W	Number of bytes	notes
00h	STAT	Status Register	R	1	STAT[0] = Reset Flag (RST) STAT[1] = Switch State ('1' = ON) STAT[2] = Trip Status ('1' = Fault) STAT[3] = Short Status ('1' = Trip from short circuit) STAT[4:7] = Reserved
01h	OUTCURR	Load Current Measurement	R	2	LSB = 62.5mA
03h	VOLTD	Voltage Drop Measurement	R	2	LSB = 62.5mV
05h	TEMP	Temperature Measurement	R	2	LSB = 0.0625°C
07h	12TACC	I ² t Status	R	3	I ² t accumulator with respect to I2T_LIM
Oah	CTRL	Control Register	RW	1	CTRL[0] = Switch Enable ('1' = En) CTRL[1] = Trip Reset ('1' = Reset) CTRL[2] = Reset Flag (RST, Reset value = '1') CTRL[4:7] = Battle Mode (0xD = Battle Enable)
0bh	OLCL	Overload Current Limit	RW	2	LSB = 62.5mA
Odh	I2T_LIM	Maximal I ² t Setting	WR	3	Thermal Constant(TC) is the trip time for twice of the overload current setting. I2TACC can be set by following formula: I2TACC = (IOVERLOAD*16) ² *TC*16 TC [s], IOVERLOAD [A]
10h	SCCL	Short Circuit Current Limit	RW	2	LSB = 62.5mA

Timing Diagram





A[0:6] – Address D[0:15] – Data I[0:7] – Internal Address A – ACK N – NACK

Outline Drawing

Notes

1. Dimensions are in mm

2. Weight: 32g

3. 3D model available

Standard Configurations

	Input	Output		
Part Number	Input Voltage range	V _{cc}	Voltage	Current
M9526-100	0 to 50 V _{DC}	3 to 5.5 V _{DC}	Following Input	Adjustable

Note: Specifications are subject to change without prior notice by the manufacturer.

Date: October 1, 2020 Rev (-) Page 8 of 8